

The Future of Life Sciences

Progressi in Medicina

ACCESSO ALL'INNOVAZIONE IN SANITÀ | COME FAR PROGREDIRE IL NUOVO WELFARE

VENEZIA

Ospedale Ss. Giovanni e Paolo - Sala San Domenico | Campo Santi Giovanni e Paolo, 6777

8, 9 e 10 SETTEMBRE 2025

Obesità3k La «summa patologica» e la sfida del Terzo Millennio

Mirto Foletto, MD Chirurgia Bariatrica Azienda Ospedale – Università, Padova

Agenda

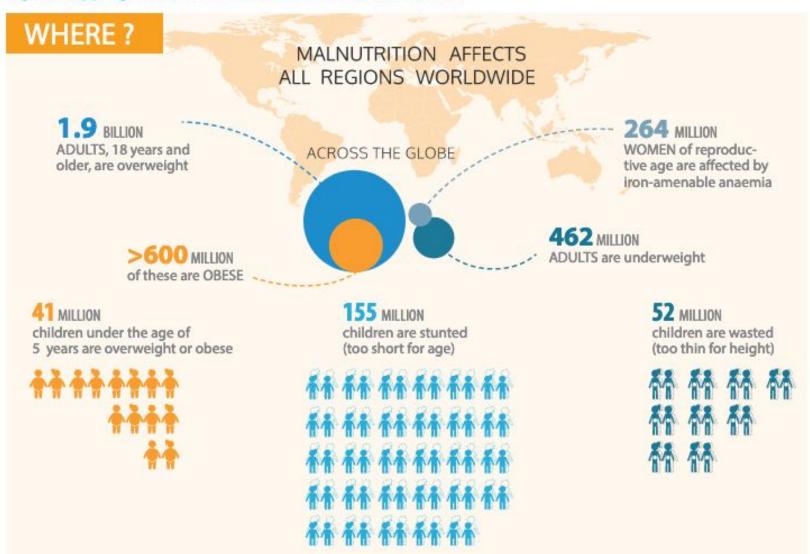
- 1. Situazione attuale e traiettorie future
- 2. Implicazioni cliniche
- 3. Costi diretti ed indiretti
- 4. Impatto sociale
- 5. Approccio clinico
- Definizione
- Staged therapy
- 6. Ottimizzzione dei risultati
- 7. La prevenzione possibile?

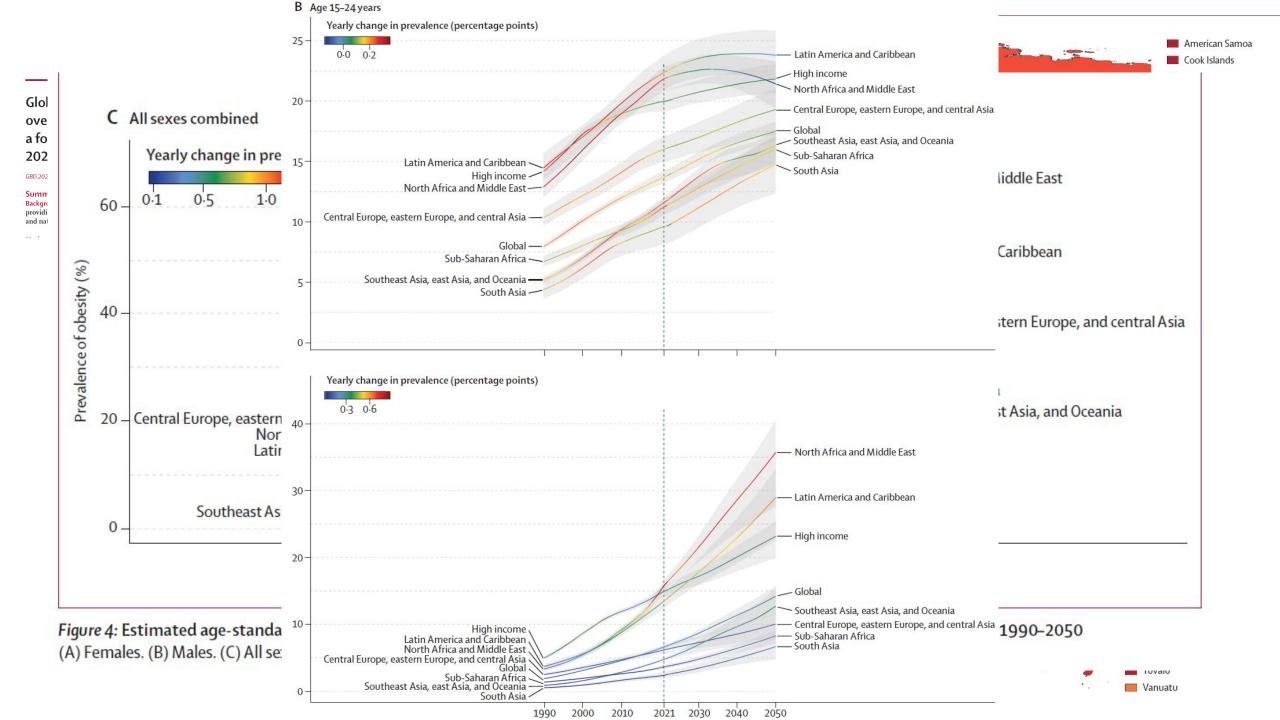
The Lancet Commissions

THE LANCET

Milken Institute School of Public Health

THE GEORGE WASHINGTON UNIVERSITY


The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report



Boyd A Swinburn, Vivica I Kraak, Steven Allender, Vincent J Atkins, Phillip I Baker, Jessica R Bogard, Hannah Brinsden, Alejandro Calvillo, Olivier De Schutter, Raji Devarajan, Majid Ezzati, Sharon Friel, Shifalika Goenka, Ross A Hammond, Gerard Hastings, Corinna Hawkes, Mario Herrero, Peter S Hovmand, Mark Howden, Lindsay M Jaacks, Ariadne B Kapetanaki, Matt Kasman, Harriet V Kuhnlein, Shiriki K Kumanyika, Bagher Larijani, Tim Lobstein, Michael W Long, Victor K R Matsudo, Susanna D H Mills, Gareth Morgan, Alexandra Morshed, Patricia M Nece, An Pan, David W Patterson, Gary Sacks, Meera Shekar, Geoff L Simmons, Warren Smit, Ali Tootee, Stefanie Vandevijvere, Wilma E Waterlander, Luke Wolfenden, William H Dietz

Fig. 2. Mapping the double burden of malnutrition (5, 6, 9)

DOI: 10.1111/ec1.70059

NARRATIVE REVIEW

WILEY

Bridging the gap in obesity research: A consensus statement from the European Society for Clinical Investigation

Abstract

Background: Most forms of obesity are associated with chronic diseases that remain a global public health challenge.

Aims: Despite significant advancements in understanding its pathophysiology, effective management of obesity is hindered by the persistence of knowledge gaps in epidemiology, phenotypic heterogeneity and policy implementation.

Materials and Methods: This consensus statement by the European Society for Clinical Investigation identifies eight critical areas requiring urgent attention. Key gaps include insufficient long-term data on obesity trends, the inadequacy of body mass index (BMI) as a sole diagnostic measure, and insufficient recognition of phenotypic diversity in obesity-related cardiometabolic risks. Moreover, the socio-economic drivers of obesity and its transition across phenotypes remain poorly understood.

Results: The syndemic nature of obesity, exacerbated by globalization and environmental changes, necessitates a holistic approach integrating global frameworks and community-level interventions. This statement advocates for leveraging emerging technologies, such as artificial intelligence, to refine predictive models

Definition and diagnostic criteria of clinical obesity

Francesce Rubino, David E Cummings, Robert H. Eckel, Ricardo V. Cohen, John P. H. Wilding, Wendy A. Brown, Fatima Cody Stanford,
Rachel L. Batterham, I. Sadaf Farooq, I. Mathalie J. Farpour-Lambert, Carel Wel Roux, Navewed Sattar, Louise A. Baur, Katherine M. Marrison,
Anoop Misra, Takashi Kadawaki, Kwang Wei Tham, Priya Sumithran, W. Timothy Garvey, John P. Kirwan, Jose-Manuel Fernández-Real,
Barbara E Corkey, Hermann Toplak, Alexander Kokkinos, Robert F. Kushner, Francesco Branca, Jonathan Valabhji, Matthias Bibihe,
Stefan R. Barstain, Havory J. Gill, Erik Rowussin, Edward Gregg, Mord B. Al Busakil, Naszene F. Algris, Eboa Al Ozini, Lena M. S. Carlsson,
Katine Clément, Jean-Pierre Després, John B. Dixon, Gauden Galea, Lee M. Kaplan, Blandine Laferère, Martine Loville, Soo Lim,
Jesús R. Luna Fuentes, Vicki M. Mooney, Joseph Nadglowski Jr. Agbo Urudinach, Magdalana Olszanecka-Glinianowicz, An Pan,
Francois Patton, Philip R. Schauer, Matthias H. Tshoph, Manifa Tvan der Merwer, Roberto Vettor, Geltrude Mirajorne

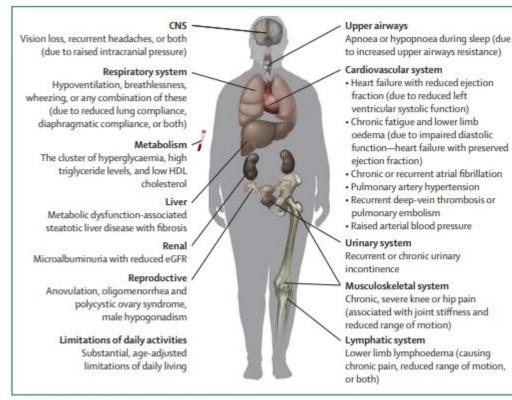


Figure 6: Diagnostic criteria for clinical obesity in adults eGFR=estimated glomerular filtration rate.

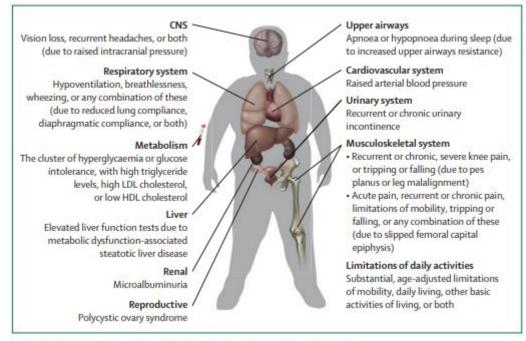


Figure 7: Diagnostic criteria for clinical obesity in children and adolescents

ORIGINAL PAPER

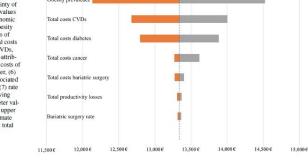
The economic burden of obesity in Italy: a cost-of-illness study

Margherita d'Errico¹ · Milena Pavlova¹ · Federico Spandonaro^{2,3}

Table 2 Prevalence of obesit
in Italy stratified by age and
BMI classification adapted
from Table 4 Obssits and

Prevalence	Normal weight	Overweight	Obese	Total (%)	
	18.50≥BMI>25, (%)		BMI ≥ 30, (%)		

Table 4 Obesity-associated cases of cancer in Italy estimated using the Population Attributable Fraction (PAF)		Cancer	type	Proportion	(%) ^a	Cases in Italy	RR ^b	PAF (%)	Cases due to obesity
		All Breast Colon-rectum		100		2,243,953	_	-	-
				23.3		522,235 296,687	1.25 ^D 1.25 ^D	5	27,460 15,600
				13.2					
		Kidney		3.8		84,413	1.68 ^D	13	11,072
		Leukae	mia	2.3		51,378	1.11 ^{GBD}	2	1225
		Liver		1.0		21,416	1.24 ^{GBD}	5	1083
		Oesoph	agus	0.2		3700	2.3 ^D	22	829
		Ovaries	100	1.7		37,829	1.04 ^{GBD}	1	333
		Pancrea	IS	0.4		9636	1.08 ^{GBD}	2	168
		Prostate	9	9.7		216,716	1.05 ^G	1	2379
		Thyroid	l	3.6		81,129	1.18 ^{GBD}	4	3117
		Uterus		4.1		91,689	1.61 ^{GBD}	12	10,936
iociacinic neart diocase	70,00	7,100	ب. ب		1,500,050	-	10	213,131	
Myocardial infarction	43,05	4,180	1.0		430,542	1.44 ^W	9	38,313	
Pulmonary embolism	36,54	8,850	0.02		6908	3.51 ^G	36	2472	
Stroke	43,05	4,180	4.9		2,109,655	1.56 ^D	11	233,272	
Endocrinological diseases									
Diabetes	43,05	4,180	8		3,444,334	6.25 ^D	54	1,853,785	


Table 8 Costs attributable to obesity in billions of EUR in Italy in 2020

Direct healthcare costs		
Bariatric surgery	€0.24	1.8%
Diabetes	€0.65	4.9%
Cardiovascular diseases	€6.66	49.9%
Cancer	€0.33	2.5%
Total direct costs	€7.89	59.2%
Indirect costs		
Absenteeism	€2.62	19.6%
Presenteeism	€2.83	21.2%
Total indirect costs	€5.45	40.8%
Total	€13.34	100.0%

1.4% eligible pts (D'Angela Assobiomedica C.R.E.A. 2020)

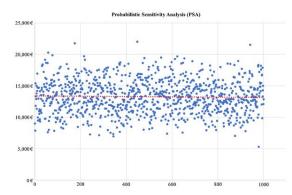

54% si rivolgono al medico per essere aiutati 36% riceve una diagnosi (Caterson et al Diabetes Obes Metab 2019)

Fig. 1 Deterministic (one-way) sensitivity analysis and tornado diagram. Seven variables were tested to address uncertainty of the following parameter values when estimating the economic burden of obesity: (1) obesity prevalence, (2) total costs of bariatric surgery, (3) total costs of obesity-attributable CVDs, (4) total costs of obesity-attributable diabetes. (5) total costs of obesity-attributable cancer, (6) total costs of obesity-associated productivity losses, and (7) rate of eligible patients receiving bariatric surgery. Parameter values are changed through upper and lower bounds to estimate minimum and maximum total obesity costs

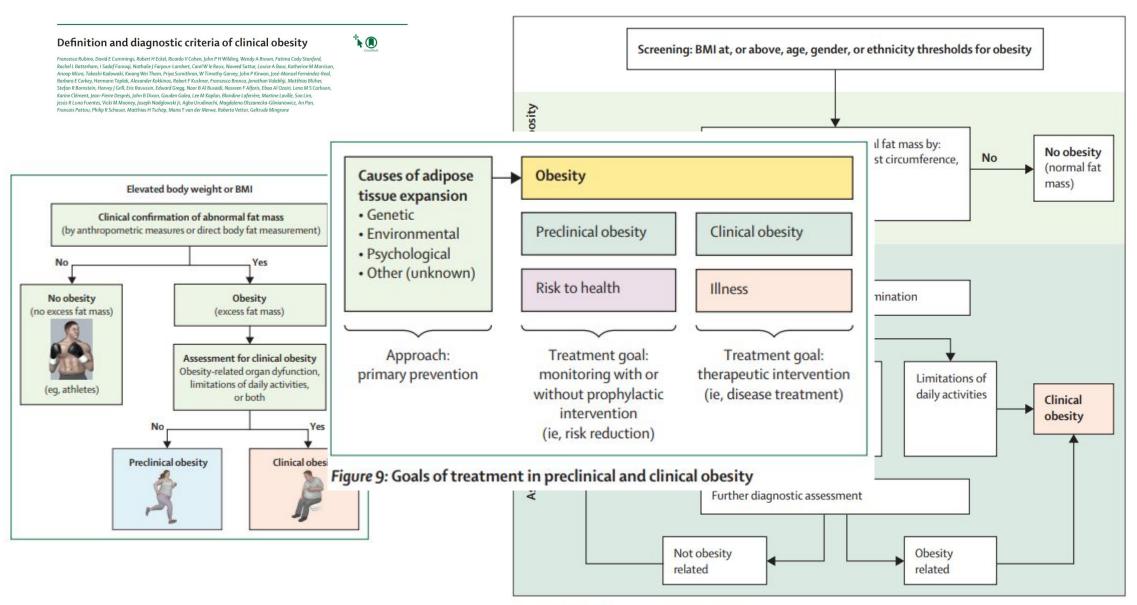
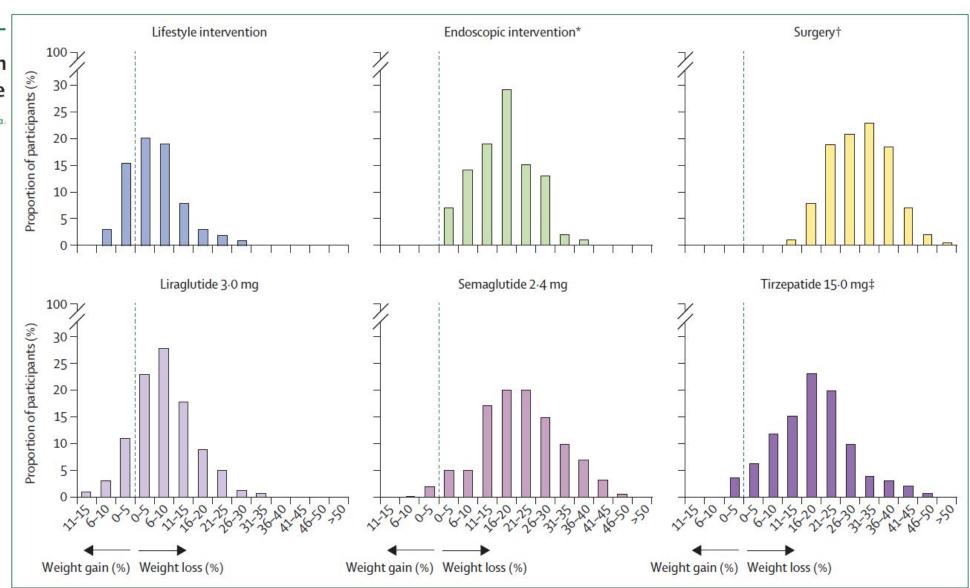
Tornado diagram

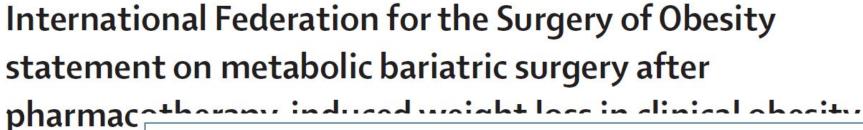
Fig. 2. Probabilistic sensitivity analysis (PSA) performed to address uncertainty of parameter values when estimating the total burden of obesity. The PSA was performed adopting the Monte Carlo method (second order) and calculation of the total obesity costs was replicated with 1,000 simulations

IMPATTO SOCIALE

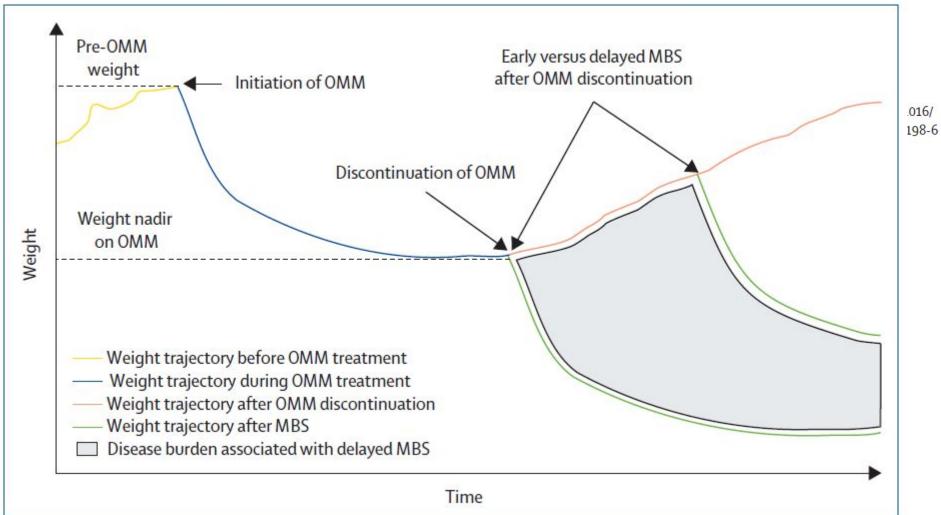
• 8.4% del budget SSN speso per curare le malattie legate all'eccesso di peso (OCSE)

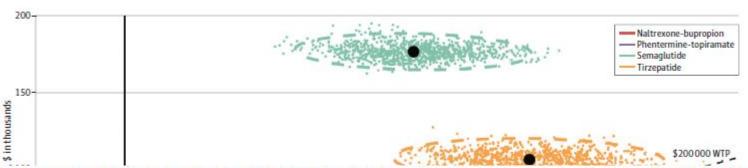
Linee di indirizzo per la prevenzione e il contrasto del sovrappeso e dell'obesità


Figure 8: Clinical assessment of obesity

Therapeutics


Carolina.



Clinical obesity characterised by organs, physical to excess adipos mortality, and re

substantial price reduction (30.5% for tirzepatide and 81.9% for semaglutide) would be needed to meet a cost-effectiveness threshold of \$100 000/QALY.

Original Investigation

Lifetime Healt in US Adults

Jennifer H. Hwang, DO; Ned

This economic evaluation found that although tirzepatide and semaglutide offered substantial longterm health benefits, they were not cost-effective at current net prices. Efforts to reduce the net prices of new antiobesity medications are essential to ensure equitable access to highly effective antiobesity medications.

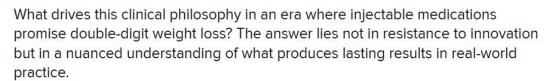
Each dat

ellipses illustrate the 95% uncertainty intervals for these results. The solid black circles indicate the mean values for the 1000 simulations. The willingness-to-pay (WTP)

are depicted by dashed lines.

Why Some Physicians Still Lead With Lifestyle-First Obesity Care Despite the GLP-1 Revolution

Erin Cates August 12, 2025



The rapid adoption of GLP-1 receptor agonists has fundamentally altered obesity management, with these medications now prescribed to millions of patients seeking significant weight loss. Yet a substantial number of physicians continue to prioritize lifestyle interventions as their primary approach, even as professional guidelines increasingly emphasize pharmacologic options and patients arrive with specific medication requests.

Guidelines Support Combination Therapy, Not Medication Replacement

Current medical guidance reflects the growing evidence base for antiobesity medications while maintaining emphasis on behavioral foundations. As noted in the National Institutes of Health's Endotext chapter on obesity pharmacotherapy, current guidelines recommend that individuals who have attempted lifestyle improvements and continue to have a BMI of \geq 30 or \geq 27 with an obesity-related comorbidity may be eligible for weight-loss medication treatment.

Nota 1: Triage

MMG. Specialista ambulatoriale/ospedaliero

Nota 2: Presa in carico

- anamnesi/EO generali
- ricerca sintomi OSAS e questionario ESS (allegato A)
- anamnesi alimentare (allegato B)
- questionari motori (allegato C)
- test psicometrici per assessment psicologico (allegato D)

Medico Chirurgo,

Medico Internista

Medico Nutrizionista/Dietista

Nota 3: Criteri di esclusione

- età ≥ 70 aa
- ASA IV
- rifiuto del pz all'approccio chirurgico

Nota 4: Fenotipizzazione

- esami di laboratorio
- valutazione nutrizionale con diario alimentare
- polisonnografia se sintomi OSAS/ESS
- assessment psicologico quando richiesto
- auspicabile valutazione Medicina Sport (corollario1)

Nota 5: Stadiazione dell'obesità sec. Edmonton Score (allegato E)

Nota 6: Esami preoperatori di I livello

- EGDS con biopsie
- RX tubo digerente prime vie
- Ecografia addome completo

preoperatori di Il livello (se necessari)

- pH manometria esofagea
- RMN/TAC

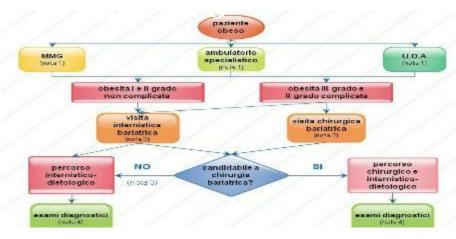
Nota 7: Preparazione

- rivalutazione internistica
- counseling nutrizionale
- ev. nutrizione riabilitativa ev. supporto psicologico ev training esercizio fisico in palestra didattica e recall infermieristico

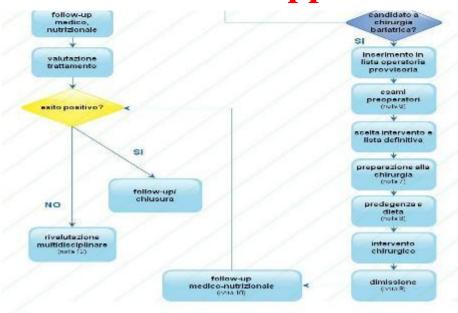
Medico Chirurgo

Medico Internista

Medico Nutrizionista/Dietista


Psicologo Clinico

Medico delloSport


Specialista dell'esercizio

Case manager

Patient Centered Approach

Nota 8: Predegenza

- routine preoperatoria
- rivalutazione antropometrica e dieta preoperatoria
- ev. nutrizione riabilitativa
- visita anestesiologica

Medico Nutrizionista/Dietista

Medico Anestesista

Medico Internista/Chirurgo

Nota 9: Dimissione

- indicazioni nutrizionali post-operatorie

Ev. presa in carico delle complicanze chirurgiche, internistiche, nutrizionali

Medico Chirurgo

Medico Internista,

Medico Nutrizionista/Dietista

Nota 10: Follow-up

- 1 mese: chirurgico e dietologico/nutrizionale
- 3/6/12 mesi: internistico e dietologico/nutrizionale
- ev. indagini diagnostiche se complicanze

a plastica (corollario 2)

ivalutazione funzionale e prescrizione esercizio fisico

Medico Chirurgo

Medico Internista

Medico Nutrizionista/Dietista

Medico dello Sport

Chirurgo Plastico

Nota 11: Terapia medica

Percorso medico internistico, nutrizionale, indicazione e promozione dell'attività fisica, farmacologico, ev. percorso psicoterapeutico

Medico Internista

Medico Nutrizionista/Dietista

Medico dello Sport

Psicologo Clinico

Nota 12: Rivalutazione

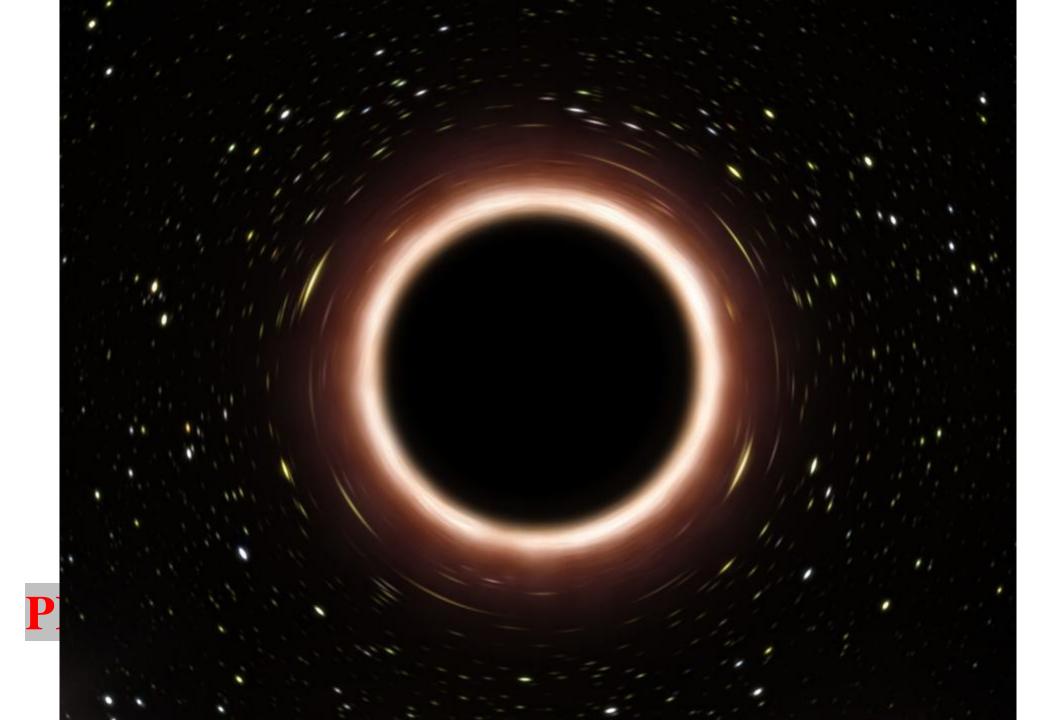
Multidisciplinare per

- eventuale chirurgia di revisione/conversione
- eventuale ricovero per nutrizione riabilitativa

Chirurgo

Medico Internista

Medico Nutrizionista/Dietoista


Psicologo Clinico

Le linee guida sono le fondamenta del PDTA Il PDTA è la madrelingua del team multidisciplinare

Empowerment del soggetto preso in carico Empowerment del Team Accountability della nostra pratica clinica Risorse!

