Innovazione organizzativa nei percorsi di diagnosi, cura, follow-up Focus on #### **IPOPARATIROIDISMO** **REGIONE PIEMONTE** 9 GIUGNO 2025 dalle 10.00 alle 13.30 #### Roberta Giordano SCDU Endocrinologia, Diabetologia e Metabolismo AOU Città Salute e Scienza Torino roberta.giordano@unito.it ## Ipoparatiroidismo nel contesto delle malattie rare endocrinologiche # Rete Interregionale per le Malattie Rare del Piemonte e della Valle d'Aosta #### Cosa sono le malattie rare Per malattia rara si intende una patologia che colpisca meno di 5 persone su 10.000 nella Comunità Europea. L'Organizzazione Mondiale della Sanità (OMS) stima che esistano dalle 6000 alle 8000 differenti malattie rare e che circa il 10% della popolazione mondiale sia affetto da una qualche malattia rara. La rarità di tali patologie fa si che i pazienti che ne sono affetti sperimentino maggiori problematiche rispetto ai pazienti affetti da patologie comuni sia per le difficoltà diagnostiche e le carenze di informazione anche fra gli operatori sanitari, sia per la carenza di opzioni terapeutiche, soprattutto farmacologiche sia per l'impatto emotivo e il vissuto di isolamento che affligge i pazienti e i loro familiari. Oltre a queste caratteristiche, si tratta spesso di malattie che minacciano la vita o che sono cronicamente debilitanti. Per affrontare questo gruppo di malattie occorre un particolare **impegno congiunto**, una **conoscenza specifica** ed una **informazione capillare**. In Italia il Decreto Ministeriale 279 del 2001 ha cercato di fornire le prime risposte concrete ai pazienti affetti da malattia rara. In particolare: - 1) ha identificato 341 malattie o gruppi di malattie rare ritenute meritevoli di esenzione dai costi sanitari per le prestazioni comprese all'interno dei Livelli Essenziali di Assistenza (LEA). Nel 2005 e nel 2007 prima la Regione Piemonte e successivamente la Regione Valle d'Aosta hanno esteso l'esentabilità ad altre 40 patologie (NB: queste patologie sono esentate solo in Piemonte e in Valle d'Aosta); il DPCM del gennaio 2017, ha aggiornato i LEA e ridefnito, all'Allegato 7, il numero delle patologie esentate dalla compartecipazione al costo, che è salito a 456. - 2) ha identificato le caratteristiche necessarie per la realizzazione della Rete nazionale per la prevenzione, la sorveglianza, la diagnosi e la terapia delle malattie rare. La Regione Piemonte e la Regione Valle d'Aosta hanno successivamente recepito il Decret **3)** ha istituito un **registro nazionale** sede presso l'Istituto Superiore di Sar interregionale per le Malattie Rare ## Rete assistenziale e di ricerca pazienti affetti da malattia rara con Rete assistenziale Percorsi e raccomandazioni Integrazione tra le Reti Europee di Riferimento (ERN)e la Rete per le Malattie Rare del Piemonte e Valle d'Aosta Attività formative e di Ricerca Pubblicazioni #### European Reference Network on Rare Endocrine Conditions Endo-ERN #### Diseases/Conditions Covered by the Network - 1: Adrenal: hyperadrenalism, hypoadrenalism/ adrenal cortical cancer. - 2: <u>Calcium and phosphate homeostasis</u>: hypoparathyroidism, and other disorders further to be determined associated with calcium and phosphate homeostasis. - 3: <u>Glucose & insulin homeostasis:</u> genetic diabetes (Sweet consortium); Syndromic obesity (Prader Willi network); Lipodystrophy - 4: <u>Growth:</u> congenital growth disorders, acquired growth disorders, other disorders further to be determined - 5: Pituitary: pituitary adenoma; aggressive pituitary tumors; hypothalamic-suprasellar tumors; congenital hypopituitarism, acquired hypopituitarism; hypophysitis, - 6: <u>Sex development and maturation:</u> Chromosomal DSD, XX-DSD, XY-DSD (DSDnet); hypogonadotropic hypogonadism / Kallmann syndrome (GnRHnet); gender dysphoria - 7: <u>Thyroid:</u> congenital hypothyroidism, TH signaling defects, central hypothyroidism IGSF1, thyroid cancer - 8: <u>Genetic endocrine tumour syndromes:</u> multiple endocrine neoplasia type 1, -2. -3 and -4, SDH-and VHL mutations, Carney Complex, McCune-Albright syndrome, to be further completed #### Ipoparatiroidismo: cause genetiche | Disorder | Clinical or laboratory features prompting
consideration of specific genetic or other
types of testing | Molecular defect | Genetic and other testing to establish diagnosis | |--|--|--|---| | Autosomal dominant
hypoparathyroidism
(ADH) type 1 and 2 | Typically asymptomatic or mild
hypocalcemia with or without
hypercalciuria (ADH types 1 and 2) | Gain of function
mutation in CASR
(type 1) or G alpha
11 (type 2) | CASR or GNA11 sequencing | | ADH type 1 with Bartter's
syndrome type 5 | Hypocalcemia, hypomagnesemia,
hypokalemia, alkalosis, hypercalciuria,
and salt and water depletion may be
seen depending on the severity | CASR | CASR sequencing | | lsolated
hypoparathyroidism | Presentation dominated by biochemical
and clinical features of
hypoparathyroidism | | PTH, GCM2, sequencing
depending on presentation | | Autosomal recessive | The state of s | PTH or GCM2 | | | Autosomal dominant | | PTH or GCM2 | | | X-linked recessive | | SOX3 locus (in males) | | | Hypoparathyroidism of
autoimmune etiology | | | | | Autoimmune mediated | | | | | Autoimmune
polyendocrine syndrome
type 1 (APS1) | Other autoimmune diseases and features
such as mucocutaneous candidiasis,
adrenal insufficiency and hypogonadism | Usually due to
homozygous
mutations in AIRE | AIRE sequencing
Presence of 21-hydroxylase
antibodies supports diagnosis | | Isolated | May show only hypoparathyroidism | AIRE mutations or of
unknown etiology | of autoimmune adrenal
insufficiency | | | | | Testing for other hormonal
insufficiency states (e.g.,
adrenal and gonadal
insufficiency) AIRE sequencing | #### **APS tipo I** | | PAS type I | | | |-------------------------------|--|--|--| | Prevalence | Very rare | | | | Incidence | <1:100 000/year | | | | M/F ratio | 3:4 | | | | Onset | Childhood | | | | Inheritance | Monogenic (AIRE gene) | | | | Autoimmune endocrine diseases | Hypoparathyroidism (80–85%) (before the age of 10 years | | | | | Addison's disease (60-70%) (before the age of 15 years | | | | | Type i diabetes (<20%) | | | | | Hypogonadism (12%) | | | | | Thursid dispose /109/ | | | | Concomitant disease | Mucocutaneous candidiasis (70–80% before the age of 5 years) | | | | Non-endocrine diseases | Immune gastritis, pernicious anemia, celiac disease, | | | | | immune hepatitis, vitiligo, alopecia areata, Sjögren's | | | | | syndrome, systemic lupus erythematodus, rheumatoid | | | | | arthritis, myasthenia gravis | | | Also known as **APECED** (candidiasis and ectodermal dystrophy), is a juvenile monogenetic syndrome with an autosomal recessive transmission. The highest prevalence has been found in populations with a high degree of kindred ship or descendants of small founder populations such as Iranian Jews (1:600 to 1:9000) and Finns (1:25,000). #### **Autosomal recessive inheritance** It is related to the **autoimmune regulator** (AIRE) gene, located on the long arm of chromosome 21, involving 14 exons. #### Autosomal recessive inheritance. The AIRE gene codes for the AIRE protein, a transcription factor, which interferes with immune regulation, and contributes to the negative selection of autoreactive thymocytes. AIRE also regulates reactions against microbial agents, especially against mycosis. AIRE deficiency contributes to an alteration in the intracellular communication between monocytes and T helper (Th) cells. Affected Carrier Adult AP (ORPHA: 282196) II (ORPHA:3143) III (ORPHA:227982) IV (ORPHA:227990) 1:20,000 Sex ratio (male/female) 1:3 Adulthood Endocrine disorders / AITD Hypogonadism AD manifestations Hypoparathyroidism T₁D Hypoparathyroidism AITD Hypogonadism Hypopituitarism T₁D AITD T1D Non - endocrine Autoimmune gastritis Autoimmune gastritis Autoimmune gastritis Celiac disease Pernicious anemia Pernicious anemia Inflammatory bowel Celiac disease Celiac disease disease Inflammatory bowel Inflammatory bowel Autoimmune pancreatitis disease disease Vitiligo Autoimmune Autoimmune pancreatitis pancreatitis Autoimmune hepatitis Primary biliary cirrhosis Alopecia Subtypes Prevalence gene ZnT8 Onset disorders / manifestations Urticaria Primary biliary cirrhosis Vitiligo **Psoriasis** Vitiligo Alopecia Rheumatoid arthritis Alopecia Urticaria Urticaria Pemphigus **Psoriasis Psoriasis Neurodermitis** Neurodermitis Rheumatoid arthritis Myasthenia gravis Sicca/Sjögren syndrome Systemic lupus erythematosus Myasthenia gravis Sicca/Sjögrensyndrome Inheritance Polygenic HLA haplotypes / AIRE DRB1*04:04-DQA1*03: DRB1*04:01-HLA-DRB1*03:01-DOA1*03:01-DQA1*05:01-01-DQB1*03:02 Single nucleotide DOB1*03:02 DOB1*02:01 polymorphisms PTPN22+1858 C/T (rs2476601), CTLA-4 C/T60 (rs3087243), Bsm I (rs1544410), Aps I (rs7975232), Taq I (rs731236), IL2-Ra CD25 Auto-antigens (rs10795791), TNF- α -308 (rs1800629)21-OH TSH-R 17-OH CaSR TPO CaSR TSH-R Tq TSH-R TPO GAD TPO Insulin Tq Tq GAD IA-2 GAD Insulin Islet cell Insulin IA-2 ZnT8 IA-2 Islet cell Islet cell ZnT8 Table 3 Genetic causes of hypoparathyroidism - key clinical findings and lab tests. | Disorder | Clinical or laboratory features prompting
consideration of specific genetic or other
types of testing | Molecular defect | Genetic and other testing to establish diagnosis | | |---|---|---|--|--| | Hypoparathyroidism,
deafness, renal
anomalies (HDR)
syndrome | Sensorineural deafness, renal anatomic
abnormalities and renal dysfunction,
autosomal dominant inheritance | GATA3 | GATA3 sequencing, hearing testing, renal imaging | | | DiGeorge syndrome | Cardiac defects (present in -80% including ventriculoseptal defect, tetralogy of Fallot, interrupted aortic arch, truncus arteriosus), immunodeficiency (recurrent infections, thymic hypoplasia or aplasia, T cell lymphopenia), hypoparathyroidism, pharyngeal and laryngeal abnormalities, cleft palate, behavioral and psychiatric problems, ophthalmic anomalies, hearing loss | Variety of defects
and deletions and
microdeletions in
chromosome
22q11.2 | Fluorescence in situ hybridization (FISH) is the traditional test most commonly done Two other diagnostic approaches are used with greater frequency than FISH including PCR-based multiplex ligation-dependent probe amplification and SNP) array. In some case, TBX sequencing is done | | | Kenny-Caffey syndrome | | | | | | Type 1 or Sanjad–Sakati
syndrome (autosomal
recessive) | Short stature, growth retardation, small
hands and feet, cortical thickening and
medullary stenosis of the long bones,
delayed fontanelle closure, abnormal
eyes, dysmorphic facies,
hypoparathyroidism | TBCE | TBCE sequencing | | | Type 2 (autosomal dominant) | Gracile bone dysplasia, short stature with cortical thickening and medullary stenosis of tubular bones, delayed closure of anterior fontanelle, eye abnormalities, and hypoparathyroidism | FAM111A | FAM111A sequencing | | Table 3 Continued. | Disorder | Clinical or laboratory features prompting
consideration of specific genetic or other
types of testing | Molecular defect | Genetic and other testing to establish diagnosis | |--|--|--|---| | Hypoparathyroidism
associated with
mitochondrial disorders | | Mutations in the
mitochondrial
genome | Mitochondrial DNA sequencing | | Kearns Sayre syndrome | Ophthalmoplegia, retinal pigmentary and
cardiac conduction abnormalities,
proximal and bulbar weakness, possibly
ataxia | mtDNA large-scale
deletion | Specialized clinical assessments
depending on the
manifestations (cardiac,
ophthalmologic, neurologic,
endocrinologic and others) | | MELAS | Encephalomyopathy, lactic acidosis, and
stroke-like episodes along with external
ophthalmoplegia, diabetes, hearing loss,
early-onset stroke symptoms, migraine,
and cognitive dysfunction | Mutations in the
mitochondrial
tRNA Leu gene | 1507 88 | | MTPDS | Disordered fatty acid oxidation associated
with neuropathy, retinopathy and fatty
liver | Mutations in
mitochondrial
genome | | #### **Evaluation and Management of Hypoparathyroidism** Summary Statement and Guidelines from the Second **International Workshop** ``` Aliya A. Khan, Dohn P. Bilezikian, Maria Luisa Brandi, Bart L. Clarke, Neil J. Gittoes, Dohn P. Bilezikian, B. Bilezikian Janice L. Pasieka, Lars Rejnmark, Dolores M. Shoback, Dohn T. Potts, Gordon H. Guyatt, Dolores M. Shoback, Dohn T. Potts, Dolores M. Shoback, Dohn T. Potts, Dolores M. Shoback, M and Michael Mannstadt 9 0 J Bone Miner Res. 2022 Dec;37(12):2568-2585. doi: 10.1002/jbmr.4691. Epub 2022 Nov 14. ``` #### Standards of care for hypoparathyroidism in adults: a Canadian and International Consensus European Journal of Endocrinology (2019) **180**, P1-P23 Aliya A Khan¹, Christian A Koch², Stan Van Uum³, Jean Patrice Baillargeon⁴, Jens Bollerslev⁵, Maria Luisa Brandi⁶, Claudio Marcocci⁷, Lars Rejnmark⁸, Rene Rizzoli⁹, M Zakarea Shrayyef¹⁰, Rajesh Thakker¹¹, Bulent O Yildiz¹² and Bart Clarke¹³ ## Hypoparathyroidism: diagnosis, management and emerging therapies Table 4. Conventional therapy for hypoparathyroidism | Medication | Dose | Comments/half-life | |--|---|--| | Calcium
carbonate or
calcium citrate | Ranges from 500–
3000 mg three
times daily
preferably with
meals to enhance
phosphate
binding effects | Calcium citrate
preferred in
presence of
Proton Pump
Inhibitor (PPI) use | | Vitamin D3
(cholecalciferol) | 1000 IU/day to
100,000 IU/day
based on 25-
hydroxy vitamin
D level | 4–6 hours plasma
half-life | | Vitamin D2
(ergocalciferol) | 50,000 IU weekly to
daily based on
25-
hydroxyvitamin D
levels | 4–6 hours plasma
half-life | | Calcitriol | 0.25-3 μg /day total
dose
administered in
divided doses | 5–8 hours plasma
half-life | | Alfacalcidol | 0.5-6 μg/day | 3–6 hours plasma half-life | | Thiazide diuretics | 25-100 mg/day | 6–12 hours plasma
half-life | # 4. rhPTH(1-84) replacement therapy in hypoparathyroidism – when and how to proceed? - 1. inadequate control of serum calcium, - oral calcium or vitamin D medications required to control serum calcium or symptoms that exceed 2.5 g calcium or >1.5 μg calcitriol per day, - hypercalciuria, renal stones, nephrocalcinosis, stone risk or reduced creatinine clearance or eGFR (<60 mL/ min), - hyperphosphatemia and/or calcium-phosphate product that exceeds 55 mg² dL² (4.4 mmol² L²) (74). ### PTH: effetti biologici | Pri | Principio attivo TERIPARATIDE | | | | | | |-----|---------------------------------|------------------|-------------------------|------------------------------|-------------------------|---------| | Ri | cerca Reimposta | | | | 1 | ndietro | | | | | | | | S 422 | | 12 | risultati trovati (2 pagine) | | | | 1 2 <u>succ</u> | ultim | | | Descrizione Farmaco | <u>Farmaco</u> | Codice principio attivo | Descrizione principio attivo | <u>Formulazione</u> | | | 0 | TERROSA 20MCG/80MCL 1
PENN | TERROSA | H05AA02 | Teriparatide | 20MCG/80MCL 1
PENN | | | | PATRIDE 20MCG/80MCL 1
PEN | PATRIDE | H05AA02 | Teriparatide | 20MCG/80MCL 1 P | EN | | 0 | SONDELBAY 20MCG/80MCL
1P 2,4 | SONDELBAY | H05AA02 | Teriparatide | 20MCG/80MCL 1P | 2,4 | | | TERROSA 20/80MCG
1CART+1PEN | TERROSA | H05AA02 | Teriparatide | 20/80MCG
1CART+1PEN | | | 0 | OSEFFYL 20MCG/80MCL
1CAR | OSEFFYL | H05AA02 | Teriparatide | 20MCG/80MCL 1C. | AR | | | MOVYMIA 20MCG/80MCL
1CAR+1PE | MOVYMIA | H05AA02 | Teriparatide | 20MCG/80MCL
1CAR+1PE | | | 0 | LIVOGIVA 20MCG/80MCL SC
1PEN | LIVOGIVA | H05AA02 | Teriparatide | 20MCG/80MCL SC
1PEN | | | 0 | TERIPARAT TEV
20MCG/80MCL 1P | TERIPARAT
TEV | H05AA02 | Teriparatide | 20MCG/80MCL 1P | | | 0 | TERROSA 20MCG/80MCL
1CART | TERROSA | H05AA02 | Teriparatide | 20MCG/80MCL
1CART | | | 0 | MOVYMIA 20MCG/80MCL
1CART | MOVYMIA | H05AA02 | Teriparatide | 20MCG/80MCL
1CART | | | 12 | risultati trovati (2 pagine) | | | | 1 2 prima pred | |----|--------------------------------|----------------|-------------------------|------------------------------|-----------------------| | | Descrizione Farmaco | <u>Farmaco</u> | Codice principio attivo | Descrizione principio attivo | <u>Formulazione</u> | | C | FORSTEO 20MCG/80MCL
1PENNA | FORSTEO | H05AA02 | Teriparatide | 20MCG/80MCL
1PENNA | | C | YORVIPATH 420MCG/1,4ML
2PEN | YORVIPATH | H05AA05 | Palopegteriparatide | 420MCG/1,4ML 2PEN | | 12 | risultati trovati (2 pagine) | | | | 1 2 prima prec |