

BARI

AOU CONSORZIALE
POLICLINICO DI BARI

Piazza Giulio Cesare, 11

10 FEBBRAIO 2020

FOCUS LOTTA ALLE INFEZIONI CORRELATE ALL'ASSISTENZA

Maria Chironna

Professore Associato di Igiene Generale e Applicata

UOC Igiene – Laboratorio di Epidemiologia Molecolare e Sanità Pubblica

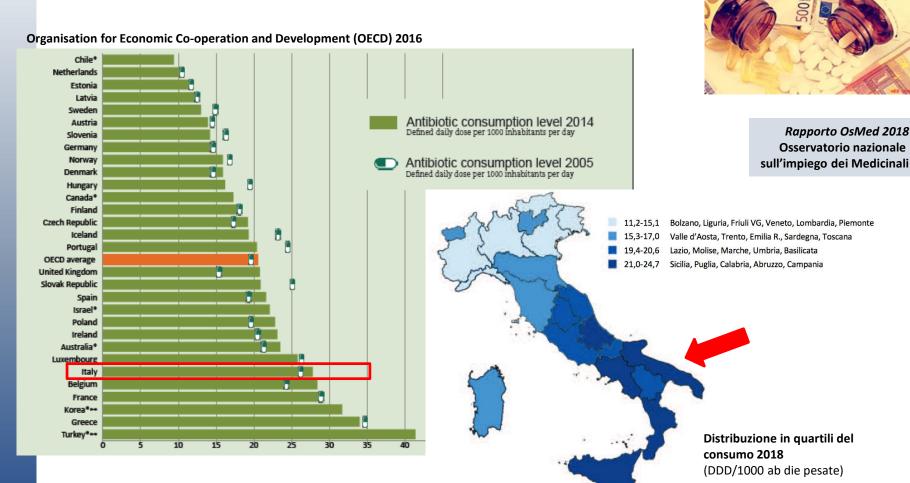
Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli
Studi di Bari – Aldo Moro

Ten threats to global health in 2019

Health Topics ~

Countries ~

Newsroom ~


Emergencies ~

Home / Newsroom / Feature stories / Ten threats to global health in 2019

- Air pollution and climate change
- Noncommunicable diseases
- Threat of global influenza pandemic
- Fragile and vulnerable settings, such as regions affected by drought and conflict
- Antimicrobial resistance
- Ebola and high-threat pathogens
- Weak primary care
- Vaccine hesitancy
- Dengue
- HIV

AMR correlata a consumo di antibiotici

La Puglia è tra le regioni in cui si registra un più alto consumo di antibiotici

Gli strumenti di contrasto all'AMR

Piano Nazionale di Contrasto dell'Antimicrobico-Resistenza (PNCAR) 2017-2020

....entro 2020:

- Impiego di antibiotici
- I frequenza delle infezioni da microrganismi resistenti
- JICA

Bollettino Ufficiale della Regione Puglia - n. 76 del 8-6-2018

38223

DELIBERAZIONE DELLA GIUNTA REGIONALE 15 maggio 2018, n. 744

Intesa 02/11/2017, ai sensi dell'art. 8, comma 6, della legge 5 Giugno 2003, n.131, tra il Governo, le Regioni e le Province autonome di Trento e di Bolzano sul documento recante: "Piano Nazionale di contrasto dell'antimicrobico-resistenza (PNCAR) 2017-2020". Recepimento.

Nomina Gruppo tecnico per attuazione PNCAR

Gli interventi per il controllo dell'antibioticoresistenza: le tre azioni chiave

SORVEGLIANZA

- Epidemiologia locale
- Diffusione sul territorio ceppi resistenti
- **ICA**

3. USO RESPONSABILE **DEGLI ANTIBIOTICI**

Sinergia tra diverse figure professionali

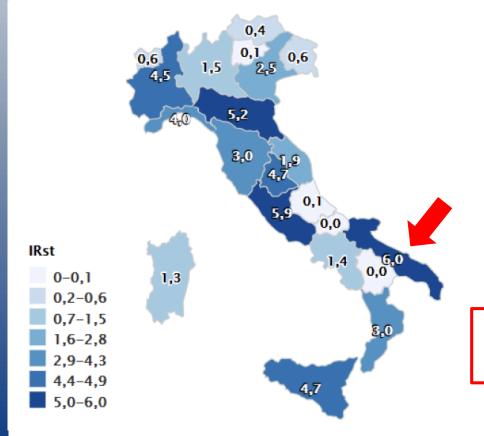
2. MONITORAGGIO

- Consumo di antibiotici
- Efficacia degli interventi (*infection control*)

AR-ISS, Sorveglianza nazionale dell'Antibiotico-Resistenza I dati 2018

Tabella 1. Copertura nazionale e per Regione, Italia 2018 (dati SDO)

Regioni	Copertura (%)		
Piemonte	26,7		
Valle d'Aosta	86,7		
Lombardia	17,5		
P.A. Bolzano	72,2		
P.A. Trento	81,9		
Veneto	69,5		
Friuli Venezia Giulia	74,3		
Liguria	18,4		
Emilia-Romagna	77,9		
Toscana	62,9		
Umbria	51,0		
Marche	19,7		
Lazio	19,8		
Abruzzo	16,9		
Molise	59,2		
Campania	41,9		
Puglia	15,6		
Basilicata	26,5		
Calabria	25,7		
Sicilia	8,5		
Sardegna	31,3		
ITALIA	35,8		



Copertura espressa come proporzione dei giorni di ospedalizzazione/anno da SDO per gli ospedali partecipanti alla sorveglianza

La priorità nell'ambito dell'AMR: Enterobatteri produttori di carbapenemasi (CPE)

Figura 3: Tasso di incidenza regionale standardizzato per età su 100.000 residenti dei casi segnalati di batteriemie da CPE, diagnosticati nell'anno 2018

- · La **Puglia** ha il più alto tasso di incidenza di batteriemie da CPE
- Quasi il 60% dei ceppi di K.
 pneumoniae è resistente ai carbapenemi

CPE problema rilevante in tutti i setting assistenziali (RSA, ecc.)

Emerging high-risk ST101 and ST307 carbapenem-resistant Klebsiella pneumoniae clones from bloodstream infections in Southern Italy

Table Distribution of sequence type of 231 characterized carbapenem-resistant *Klebsiella pneumoniae* by year of isolation, Puglia region 2014-2016

	Number of CR-	Sequence type					
	KP characterized/	512	258	101	307	Other	
Year	number of isolates (%)	N. (%)	N. (%)	N. (%)	N. (%)	N. (%)	
2014	54/150 (36.0)	30 (55.5)	3 (5.5)	7 (12.9)	6 (11.2)	8 (14.9)	
2015	72/179 (40.2)	45 (62.5)	1 (1.4)	9 (12.5)	11 (15.3)	6 (8.3)	
2016	105/362 (29.0)	30 (28.6)	8 (7.6)	31 (29.5)	25 (23.8)	11 (10.5)	
Total	231/691 (33.4)	105 (45.5)	12 (5.2)	47 (20.3)	42 (18.2)	25 (10.8)	

Geni di resistenza ai carbapenemi:

- blaKPC 95.6% (blaKPC-3)
- blaVIM 3.5%,
- blaNDM 0.1%
- blaOXA-48 0.1%

ST101 e ST307 caratterizzati da

- elevato numero di geni di resistenza agli antibiotici
- elevato numero di geni di virulenza

First detection of autochthonous extensively drugresistant NDM-1 *Pseudomonas aeruginosa* ST235 from a patient with bloodstream infection in Italy, October 2019

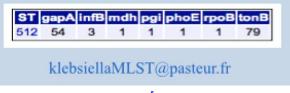
- Ceppo resistente a tutte le classi di antibiotici tranne colistina
- Presenza di molti geni di virulenza compreso ExoU associato a più elevata mortalità

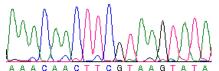
Data: IZSPB

- Problema: riduzione delle opzioni terapeutiche
- Patogeni con gene NDM non sensibili a ceftazidime-avibactam e meropenem-veborbactam

Di cosa hanno bisogno i clinici: identificazione rapida di patogeni e di geni di resistenza *Ruolo della biologia molecolare*

- Real time PCR per patogeni e principali geni di resistenza (KPC, mecA, vanA/B)
- Real time PCR per geni di resistenza a carbapenemi (NDM, KPC, OXA-48, VIM, IMP), Beta-Lattamici a spettro esteso ESBL (CTX-M) e Vancomicina (VanA, VanB)
- Tecnologia Film-array/Microarray per identificazione rapida di patogeni e di geni di resistenza su campioni respiratori ed emocolture


Il futuro della diagnostica


Next Generation Sequencing (NGS)

Identificazione delle specie batteriche tramite sequenziamento della subunità ribosomiale 16S

L'importanza della caratterizzazione molecolare di ceppi resistenti agli antibiotici

- Multilocus Sequence Typing (MLST)
 Basata su sequenziamento di segmenti genomici del batterio (alleli) (7 geni housekeeping)
- PFGE (Pulsed field gel electrophoresis)

 NGS (Next-Generation Sequencing)

- Identificare cloni emergenti
- Studio di outbreak

Key points

• In Puglia AMR enorme problema di Sanità Pubblica

- Estendere rete di sorveglianza
- Diagnostica rapida dei patogeni resistenti agli antibiotici
- Interventi urgenti di «infection control»
- Comunicazione efficace per maggiore consapevolezza problema
- Approccio ONE HEALTH
- Allocazione di risorse dedicate e adeguate

