ROADSHOW DIABETOLOGIA DIABETE MELLITO E COMPLICANZE CARDIOVASCOLARI Milano, 5 dicembre 2018

Diabete mellito e complicanze cardiovascolari: dimensione del problema, bisogni ed evoluzioni terapeutiche

Stefano Genovese

Unità di Diabetologia, Endocrinologia e Malattie Metaboliche

Disclosure Statement

• Stefano Genovese, in the last three years, has received speaking and/or consulting fees and research grants from:

- Abbott Diabetes Care
- AstraZeneca
- Boehringer Ingelheim
- Bristol-Myers Squibb
- Bruno Farmaceutici
- Eli Lilly
- Janssen
- Lifescan
- Menarini
- Merck Sharp & Dohme
- Mundipharma
- Novartis
- Novo Nordisk
- Sanofi
- Takeda

Cardiovascular diseases are the leading cause of morbidity and mortality in patients with diabetes mellitus

1. Seshasai *et al.* N Engl J Med 2011;364:829–841; 2. Folsom *et al.* Diabetes Care 1999;22:1077–83; 3. Huxley *et al.* BMJ 2006;332:73–8; 4. IDF. Diabetes Atlas. 2015; 5. WHO - Global Atlas on Cardiovascular Diseases Prevention and Control

Hyperglycaemia is among the most important causes of death

The burden of cardiovascular disease in type 2 diabetes mellitus in Italy

Prevalence of cardiovascular complications in people with type 2 diabetes

Studio RIACE; Penno et al. Journal of Internal Medicine, 2013, 274; 176–191

Diabetes patients requiring glucose-lowering therapy and nondiabetics with a prior MI carry the same cardiovascular risk A population study of 3.3 mln people

Is diabetes a CHD equivalent?

Prevalence of cardiovascular complications based on the duration of diabetes

MI, stroke, coronary, carotid and peripheral revascularisation

Subjects with Normal Glucose Tolerance

The modal day and the AGP depict 3,628 continuous glucose readings measured for 30 days

The modal day shows each data point graphed without regard to date

The AGP replaces the individual data points with five smoothed frequency curves, which represent the underlying glycaemic pattern (accounting for outlier values)

The statistical summary (shown separately, but contained in the AGP report) is customisable

Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus

	Intensive treat standard treat	tment/ ment	Weight of study size	C (1	Odds ratio 95% CI)	Odds ratio (95% Cl)		Intensive trea standard trea	tment/ tment	Weight of study size	Odds ra (95% Cl	tio Odds ratio) (95% CI)
	Participants	Events						Participants	Events			
UKPDS ^{4,7}	3071/1549	221/141	21.8%			0.78 (0.62-0.98)	UKPDS ^{4,7}	3071/1549	426/259	8.6% -		0.75 (0.54-1.04)
PROactive ¹⁸⁻²⁰	2605/2633	119/144	18.0%	_	<u> </u>	0.83 (0.64-1.06)	PROactive ^{18-20*}	2605/2633	164/202	20.2%		0.81 (0.65-1.00)
ADVANCE ⁵	5571/5569	153/156	21.9%		_ _	0.98 (0.78–1.23)	ADVANCE ⁵	5571/5569	310/337	36.5%		0.92 (0.78–1.07)
VADT ^{21,22}	892/899	64/78	9.4%			0.81 (0.58-1.15)	VADT ^{21,22}	892/899	77/90	9.0%		
ACCORD ⁸	5128/5123	186/235	28.9%		-	0.78 (0.64-0.95)	ACCORD ⁸	5128/5123	205/248	25.7%		0.82 (0.68–0.99)
Overall	17 267/15773	743/754	100%	\diamond	>	0-83 (0-75-0-93)	Overall	17 267/15773	1182/1136	100%	\diamond	0.85 (0.77–0.93)
			0.4	0.6 0.8	1.0 1.2 1.4	1.6 1.8 2.0				0.4	0.6 0.8 1.0	1·2 1·4 1·6 1·8 2·0
			Intensive trea	atment better	Standard t	treatment better				Intensive tre	eatment better	Standard treatment better

Figure 1: Probability of events of non-fatal myocardial infarction with intensive glucose-lowering versus standard treatment

Figure 2: Probability of events of coronary heart disease with intensive glucose-lowering versus standard treatment

*Included non-fatal myocardial infarction and death from all-cardiac mortality.

Figure 3: Probability of events of stroke with intensive glucose-lowering versus standard treatment *Included only non-fatal strokes.

Figure 4: Probability of events of all-cause mortality with intensive glucose-lowering versus standard treatment

Adjusted Hazard Ratios for all-cause mortality by HbA1c deciles in people given oral combination and insulin-based therapies

Non-insulin treated patients (n=27,965)

Insulin treated patients (n=20,005)

Monotherapy with many SUs is associated with increased mortality and CV risk when compared with metformin

Danish registry study (N=107,806) of patients initiating SUs or metformin between 1997 and 2006; follow-up of 9 years

RESEARCH ARTICLE

Three-year mortality in diabetic patients treated with different combinations of insulin

Cardiovascular safety of sulphonylureas: a meta-analysis of randomised clinical trials

					MH-OR (95% CI)	Sullo	nyiureas	Com	parator	
First author (Year)	MH-OR	LL (95%. CI)	UL (95% CI)	р		# Events	#Patients	# Events	# Patients	Variance(%)
Birkeland 1996 [33]	0.315	0.012	8.269	0.489		0	18	1	18	0.07
Chou 2008 [41]	0.516	0.046	5.729	0.590		1	222	2	230	0.21
Perriello 2006 [99]	0.522	0.128	2.131	0.365		3	137	6	146	0.64
Gerstein 2010 [67]	0.534	0.301	0.945	0.031		20	339	35	333	3.42

MU OD (OF % CI)

Cultonulurage

Compositor

But a significant increase in **mortality** was observed with sulphonylureas (MHOR: 1.22 [1.01–1.49], *P*=0.047

Overall	1.041	0.825	1.312	0.736	•		617	13.327	878	16.456	100
Seck 2010 [112]	9.124	0.490	169.848	0.138		>	4	584	0	588	0.28
Nauck 2011 [96]	7.035	0.362	136.640	0.197	│	\rightarrow	3	401	0	400	0.21
Johnston 1998 [84]	6.034	0.619	58.837	0.122			3	92	1	180	0.28
Jain 2006 [83]	2.722	0.714	10.380	0.143	│		8	251	3	251	0.78
Gallwitz 2012 [62]	2.210	1.107	4.412	0.025	│		26	775	12	776	2.21
Bakris 2006 [30]	1.922	0.553	6.679	0.304			7	180	4	194	0.78
Ferrannini 2009 [56]	1.851	0.912	3.754	0.088			22	1393	12	1396	2.42
Ristic 2007 [118]	1.560	0.256	9.490	0.630			3	129	2	133	0.36
Nissen 2008 [5]	1.177	0.518	2.676	0.697			13	273	11	270	1.71
Garber 2009 [65]	1.167	0.386	3.522	0.785	●		7	248	6	247	0.93
Goke 2010 [71]	1.164	0.388	3.492	0.787	●		7	430	6	428	0.93
Kahn 2006 [85]	1.144	0.704	1.858	0.587			26	1441	46	2910	4.13

Favours sulfonylureas Favours comparators

DPP4-I

Adapted from Deacon CF, et al. Diabetes. 1995; 44: 1126-1131.

CV safety of DPP4-I

A Primary Cardiovascular Outcome

TECOS

Sitagliptin	7332	7131	6937	6777	6579	6386	4525	3346	2058	1248
Placebo	7339	7146	6902	6751	6512	6292	4411	3272	2034	1234

Combination therapy with metformin plus sulphonylureas versus metformin plus DPP-4 inhibitors: association with major adverse cardiovascular events and all-cause mortality

SU	SU generation	First pre	escription, n (%)	Last pre	escription, n (%)	DPP-4i	First _I	prescription, n (%)	Last pi	rescription, n (%)
Gliclazide	2	30 301	(89.2)	30 297	(89.2)	Sitagliptin	5864	(74.6)	5857	(74.5)
Glimepiride	2	2337	(6.9)	2397	(7.1)	Saxagliptin	996	(12.7)	1012	(12.9)
Glipizide	2	896	(2.6)	883	(2.6)	Vildagliptin	730	(9.3)	678	(8.6)
Glibenclamide	2	330	(1.0)	279	(0.8)	Linagliptin	274	(3.5)	317	(4.0)
Tolbutamide	1	119	(0.4)	127	(0.4)					
		33 983	(100.0)	33 983	(100.0)		7864	(100.0)	7864	(100.0)

Table 2. Sulphonylurea (SU) and dipeptidyl peptidase-4 inhibitor (DPP-4i) types at cohort entry and exit.

Table 3. Events, crude rates, risk ratios and adjusted hazard ratios (aHRs) for all-cause mortality in patients treated with metformin plus sulphonylurea (SU) versus metformin plus dipeptidyl peptidase-4 inhibitor (DPP-4i) dual therapy.

Study design	Cohort (in combination with metformin)	n	Events	Crude rates (per 1000 person-years)	Crude risk ratio (95% CI)	aHR (95% CI)	р
All subjects	SU	33 983	1133	16.9	2.327 (1.864-2.904)	1.357 (1.076-1.710)	0.010
	DPP-4i	7864	84	7.3			
Directly matched	SU	5447	96	10.2	2.108 (1.466-3.076)	1.850 (1.245-2.749)	< 0.001
	DPP-4i	5447	40	4.9			
Propensity-matched	SU	6901	121	10.7	1.743 (1.289-2.379)	1.497 (1.092-2.052)	0.012
	DPP-4i	6901	63	6.2			

Combination therapy with metformin plus sulphonylureas versus metformin plus DPP-4 inhibitors: association with major adverse cardiovascular events and all-cause mortality

Table 4. Events, crude rates, risk ratios and adjusted hazard ratios (aHRs) for first major adverse cardiovascular events (MACE) in patients treated with metformin plus sulphonylurea (SU) versus metformin plus dipeptidyl peptidase-4 inhibitor (DPP-4i) dual therapy.

Study design	Cohort (in combination with metformin)	n*	Events	Crude rates (per 1000 person-years)	Crude risk ratio (95% CI)	aHR (95% CI)	р
All subjects	SU	29 865	661	11.3	2.145 (1.629-2.824)	1.710 (1.280-2.285)	< 0.001
	DPP-4i	7091	55	5.3			
Directly matched	SU	4423	58	7.7	1.469 (0.965-2.234)	1.323 (0.832-2.105)	0.237
	DPP-4i	4423	35	5.2			
Propensity-matched	SU	6175	88	8.8	1.688 (1.191-2.414)	1.547 (1.076-2.225)	0.019
	DPP-4i	6229	48	5.2			

*With no prior MACE.

Directly Matched Cohorts: Exposed (metformin plus DPP-4i) patients were matched to non-exposed (metformin plus SU) patients by age (± 2 years), gender, year of index exposure, diabetes duration (± 1 year), BMI (± 3 kg/m²), serum creatinine ($\pm 10 \mu$ mol/L) and HbA1c [$\pm 1\%$ ($\pm 11 \mu$ mol/mol)].

Propensity-matched Cohorts: Exposed patients were matched to non-exposed patients by propensity score, incorporating age, gender, year of index exposure, diabetes duration, BMI, serum creatinine, total cholesterol, SBP, GP contacts in the 12 months to index date, HbA1c, Charlson index, smoking status and line of therapy.

Sulphonylurea compared to DPP-4 inhibitors in combination with metformin carries increased risk of severe hypoglycaemia, cardiovascular events, and all-cause mortality

All patients with T2D in Sweden who initiated second-line treatment with metformin + sulphonylurea or metformin + DPP-4i during 2006–2013 (n = 40,736 and 12,024, respectively) were identified in this nationwide study

Sulphonylureas increase the risk of hospitalisation for heart failure in comparison to DPP4-i

Risk of hospitalization for heart failure in patients with type 2 diabetes newly treated with DPP-4 inhibitors or other oral glucose-lowering medications: a retrospective registry study on 127,555 patients from the Nationwide OsMed Health-DB Database

127,555 patients 2.6 years (mean duration of observation)

Table 4 Results of the Cox	sti ² , Pierluigi Russo ³ , 1 ⁵ , Sergio Pecorelli ^{3,6} , work [†] proportional hazard multiple re	.27,555 pts	39,465 pts in the whole study population i	S ncluding
hospitalization episodes with a primary or sec	a primary or secondary HF dia	gnosis		
Variable	Before propensity matching	g	After propensity matching	
Variable	Before propensity matching HR (95% CI)	g P-value	After propensity matching HR (95% CI)	P-value
Variable Glucose-lowering medications	Before propensity matching HR (95% CI)	g P-value	After propensity matching HR (95% CI)	P-value
Variable Glucose-lowering medications Sulphonylureas (reference)	Before propensity matching HR (95% CI)	g P-value	After propensity matching HR (95% CI) <u>1.000</u>	P-value
Variable Glucose-lowering medications Sulphonylureas (reference) Glitazones	Before propensity matching HR (95% CI) <u>1.000</u> 0.926 (0.807–1.063)	g P-value 0.277	After propensity matching HR (95% CI) <u>1.000</u> 0.777 (0.635–0.950)	P-value 0.014

Conclusion: In a very large observational study, the use of DPP-4i was associated with a reduced risk of HHF when compared with sulphonylureas

SGLT2-I

SGLT2i Modulates Several Factors Related to CV risk

BP, blood pressure; CV, cardiovascular; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SGLT2i, sodium–glucose co-transporter 2 inhibitor

EMPA-REG: Empagliflozin CV Safety Trial

N=7020, T2DM with CV disease, RDBPC design, Empa 10 or 25 mg/d added to standard care, median 3.1 yrs. Age 63 yrs, Wt ~86 kg. 1° endpoint = 3pt MACE, composite of CV death, fatal and non-fatal MI and stroke Primary Outcome Placebo Hazard ratio, 0.86 (95.02% CI, 0.74–0.99) Placebo Placebo

Mont

No. at Risk 4687 4580 4455 43 28 3851 2821 2359 1534 370 Empagliflozin 4687 4651 4608 4556 4128 3079 2617 1722 414 2333 2303 Placebo 2280 2243 2012 1503 1281 825 177 2333 2256 2194 2112 1875 1380 1161 741 166

1° in 490/4687 (10.5%) in Empa groups vs 282/2333 (12.1%) in Pbo, HR 0.86; 95% CI 0.74, 0.99; *P*=0.04; N/S differences in MI or stroke, but Empa lowered rates of CV deaths (3.7%, vs 5.9%; RRR 38%), hospitalisation for HF (2.7% vs 4.1%, RRR 35%), and death from any cause (5.7% vs 8.3%, RRR 32%)

CV, cardiovascular; HF, heart failure; HR, hazard ratio; MACE, major adverse cardiac event; MI, myocardial infarction; RRR, relative risk ratio; T2DM, Type 2 diabetes mellitus

No. at Risk Empagliflozin

Placebo

GLP1-RA

LEADER Study: Liraglutide CV Safety Trial

Marso SP, et al. N Engl J Med 2016;375:311-322

54

CV, cardiovascular

Standard Italiani per la cura del diabete mellito 2018 AMD SID

In associazione a metformina, sulla base del profilo complessivo di efficacia, tollerabilità e sicurezza, pioglitazone, inibitori DPP4, agonisti GLP1 o inibitori SGLT2 sono preferibili rispetto a acarbose, sulfoniluree o glinidi.

La glibenclamide, che si associa ad un rischio di ipoglicemia maggiore anche rispetto alle altre sulfoniluree, non deve essere mai usata.

Nei pazienti con pregressi eventi cardiovascolari maggiori SGLT-2 inibitori, GLP-1 agonisti a lunga durata d'azione e pioglitazone devono essere considerati farmaci di prima scelta, salvo controindicazioni.

Risk factors

Earlier and more aggressive intervention may improve treating to target compared with conventional therapy

Adapted from Del Prato S et al. Int J Clin Pract. 2005;59:1345–1355.

Clinical inertia

- Is failure of health care providers to initiate or intensify therapy when indicated.
- Clinical inertia is due to at least three problems:
 - overestimation of care provided;
 - use of "soft" reasons to avoid intensification of therapy;
 - and lack of education, training, and practice organization aimed at achieving therapeutic goals.

Consequences of delayed intervention in patients without previous CVD

Conclusioni

- La prevenzione delle malattie cardiovascolari nasce dalla prevenzione del diabete
- Bisogna **aggredire** il diabete cercando di ridurre la glicemia verso valori normali, in sicurezza
- I nuovi farmaci hanno dimostrato di **ridurre** gli eventi cardiovascolari
- I medici di medicina generale **non** possono prescrivere i farmaci innovativi
- Sostenibilità economica

Thank you for your attention

